625 research outputs found

    A Microfluidic Platform for Precision Small-volume Sample Processing and Its Use to Size Separate Biological Particles with an Acoustic Microdevice.

    Get PDF
    A major advantage of microfluidic devices is the ability to manipulate small sample volumes, thus reducing reagent waste and preserving precious sample. However, to achieve robust sample manipulation it is necessary to address device integration with the macroscale environment. To realize repeatable, sensitive particle separation with microfluidic devices, this protocol presents a complete automated and integrated microfluidic platform that enables precise processing of 0.15-1.5 ml samples using microfluidic devices. Important aspects of this system include modular device layout and robust fixtures resulting in reliable and flexible world to chip connections, and fully-automated fluid handling which accomplishes closed-loop sample collection, system cleaning and priming steps to ensure repeatable operation. Different microfluidic devices can be used interchangeably with this architecture. Here we incorporate an acoustofluidic device, detail its characterization, performance optimization, and demonstrate its use for size-separation of biological samples. By using real-time feedback during separation experiments, sample collection is optimized to conserve and concentrate sample. Although requiring the integration of multiple pieces of equipment, advantages of this architecture include the ability to process unknown samples with no additional system optimization, ease of device replacement, and precise, robust sample processing

    Generalized polarizabilities and the chiral structure of the nucleon

    Get PDF
    We discuss the virtual Compton scattering reaction e−p→e−pγe^-p\to e^-p\gamma at low energies. We present results for the generalized polarizabilities of the nucleon obtained in heavy baryon chiral perturbation theory at O(p3)O(p^3).Comment: 5 pages, LaTex file, 1 postscript figure, uses ``espcrc1.sty'', talk given by S. Scherer at the 15th International Conference on Few Body Problems in Physics, Groningen, The Netherlands, 22-26 July 1997, to appear in the proceedings (Nucl. Phys. A

    Ariel - Volume 10 Number 3

    Get PDF
    Executive Editors Madalyn Schaefgen David Reich Business Manager David Reich News Editors Medical College Edward Zurad CAHS John Guardiani World Mark Zwanger Features Editors Meg Trexler Jim O\u27Brien Editorials Editor Jeffrey Banyas Photography and Sports Editor Stuart Singer Commons Editor Brenda Peterso

    Chiropractic as spine care: a model for the profession

    Get PDF
    BACKGROUND: More than 100 years after its inception the chiropractic profession has failed to define itself in a way that is understandable, credible and scientifically coherent. This failure has prevented the profession from establishing its cultural authority over any specific domain of health care. OBJECTIVE: To present a model for the chiropractic profession to establish cultural authority and increase market share of the public seeking chiropractic care. DISCUSSION: The continued failure by the chiropractic profession to remedy this state of affairs will pose a distinct threat to the future viability of the profession. Three specific characteristics of the profession are identified as impediments to the creation of a credible definition of chiropractic: Departures from accepted standards of professional ethics; reliance upon obsolete principles of chiropractic philosophy; and the promotion of chiropractors as primary care providers. A chiropractic professional identity should be based on spinal care as the defining clinical purpose of chiropractic, chiropractic as an integrated part of the healthcare mainstream, the rigorous implementation of accepted standards of professional ethics, chiropractors as portal-of-entry providers, the acceptance and promotion of evidence-based health care, and a conservative clinical approach. CONCLUSION: This paper presents the spine care model as a means of developing chiropractic cultural authority and relevancy. The model is based on principles that would help integrate chiropractic care into the mainstream delivery system while still retaining self-identity for the profession

    Technologies and Approaches to Elucidate and Model the Virulence Program of Salmonella

    Get PDF
    Salmonella is a primary cause of enteric diseases in a variety of animals. During its evolution into a pathogenic bacterium, Salmonella acquired an elaborate regulatory network that responds to multiple environmental stimuli within host animals and integrates them resulting in fine regulation of the virulence program. The coordinated action by this regulatory network involves numerous virulence regulators, necessitating genome-wide profiling analysis to assess and combine efforts from multiple regulons. In this review we discuss recent high-throughput analytic approaches used to understand the regulatory network of Salmonella that controls virulence processes. Application of high-throughput analyses have generated large amounts of data and necessitated the development of computational approaches for data integration. Therefore, we also cover computer-aided network analyses to infer regulatory networks, and demonstrate how genome-scale data can be used to construct regulatory and metabolic systems models of Salmonella pathogenesis. Genes that are coordinately controlled by multiple virulence regulators under infectious conditions are more likely to be important for pathogenesis. Thus, reconstructing the global regulatory network during infection or, at the very least, under conditions that mimic the host cellular environment not only provides a bird's eye view of Salmonella survival strategy in response to hostile host environments but also serves as an efficient means to identify novel virulence factors that are essential for Salmonella to accomplish systemic infection in the host

    Virtual Compton Scattering off the Nucleon in Chiral Perturbation Theory

    Get PDF
    We investigate the spin-independent part of the virtual Compton scattering (VCS) amplitude off the nucleon within the framework of chiral perturbation theory. We perform a consistent calculation to third order in external momenta according to Weinberg's power counting. With this calculation we can determine the second- and fourth-order structure-dependent coefficients of the general low-energy expansion of the spin-averaged VCS amplitude based on gauge invariance, crossing symmetry and the discrete symmetries. We discuss the kinematical regime to which our calculation can be applied and compare our expansion with the multipole expansion by Guichon, Liu and Thomas. We establish the connection of our calculation with the generalized polarizabilities of the nucleon where it is possible.Comment: 26 pages, 2 Postscript figures, RevTex using epsfi

    Communications Biophysics

    Get PDF
    Contains reports on six research projects.National Institutes of Health (Grant 2 P01 GM-14940-01)Joint Services Electronics Programs (U. S. Army, U.S. Navy, and U.S. Air Force) under Contract DA 28-043-AMC-02536(E)National Aeronautics and Space Administration (Grant NsG-496)National Institutes of Health (Grant 2 ROl NB-05462-03
    • …
    corecore